

Tutorial IRIS / VSPEC Version 6.2

Seite 1

Astrospektroskopie

Tutorial

Für das Bearbeiten, Optimieren, Reduzieren, Kalibrieren, Normieren und Bereinigen von Geräteeinfluss und Kontinuum bei Spektralaufnahmen mit den Freeware-Programmen

"IRIS" und "VSPEC"

Allgemeiner Hinweis: Die im Tutorial vorhandenen Screenshots dienen nur zur Veranschaulichung des Textes und haben in der Kopfzeile vielfach die falschen Dateibezeichnungen. Dies geschah infolge mehrerer Überarbeitungen dieses Tutorials, wobei neue Screenshots erstellt werden mussten.

Siehe auch Versionen- History auf letzter Seite dieses Tutorials

Hinweis: Als Anhang 2 befindet sich für dieses Tutorial eine Navigationshilfe in Form eines Stichwortregisters

Seite 2

Anmerkung zur Spektralaufname: Die Kamera muss so positioniert sein, dass sich für die Bearbeitung mit VSPEC die grössere Wellenlänge (= rot) rechts im Bild befindet! Notfalls bietet VSPEC die Möglichkeit, das Spektrum zu spiegeln (Button "Mirror"). Besser ist, bereits zu Beginn auf die richtige Orientierung zu achten. Ein Drehen mit IRIS ist nicht empfehlenswert, da dies dann auch bei allen Lights, Darks, Flats und auch beim Kalibriersystem vorgenommen werden müsste.

Hinweis: Im Tutorial werden folgende Dateinamen verwendet, die natürlich frei gewählt werden können, aber konsequent mit den einmal gewählten Namen verwendet werden müssen. Vor allem VSPEC reagiert rasch mit "Abstürzen", wenn dies nicht konsequent eingehalten wird

Dateinamen	Fertigung	Summenbild	Programm	Schritt(e)
behandelt1.fit	Mit IRIS behandelte	è siriusmit.fit		
behandelt2.fit	Summenbilder aus Lights, Offset,			
behandelt3.fit	Flat, Masterdark und		IRIS	16
	Himmelhintergrund. Siehe IRIS			
	Schritt 16			
bias1.fit	Aufnahmen mit abgedecktem	è offset.fit		
bias2.fit	CCD und kleinstmöglicher			
bias3.fit	Belichtungszeit		IRIS	2+3
blas4.fit				
blas5.fit				
cosme.lst	Aus einem beliebigen Dark			0.7
	werden die Hotpixels bestimmt		IRIS	6+7
	Automatisch gespeichert			
dark301.11t	Aumanmen mit abgedecktem	e dark30.11t		
dark302.iii dark303.iii	CCD mit gleichen Bedingungen -			4.5
	Tomporatur, wie bei Light		IRIS	4+5
	Aufnahmen			
flat fit	Aufnahmen auf ausgeglichen	è flat fit		
natint	beleuchtete Fläche (z B	o natint		
	Dämmerungshimmel) mit			
	Belichtungszeit für Graustufe von		IRIS	8+9
	ca. 2/3 Maximum. Oder Masterflat			
	erstellt mit IRIS; siehe Schritt 8			
gerätekurve.spc	Kontinuum der Geräteeinflüsse		VSPEC	12-17
himmel1.fit	Himmelshintergrund. Erstellt aus			
himmel2.fit	den Lights mit IRIS; siehe Schritte		IRIS	10-13
himmel3.fit	11, 12 und 13.			
sirius1.fit	Lightbilder. Die eigentlichen			
sirius2.fit	Spektralaufnahmen		IRIS	-
sirius3.fit				
siriuscomp.fit	Zusammengesetzes Spektralband			21+22
siriusflach.spc	Vom Kontinuum befreites Profil		VSPC	19+20
siriuskal.spc	Kalibriertes Spektralprofil		VSPEC	4-10
siriuslinie.spc	Mit VSPEC erstelltes		VSPEC	2+3
airiu anait fit	Spektralprofil			
Siriusmit.iit	Aus den drei "benandelt.itt		IRIS	17
siriusporm spc	Normiertes Spektralprofil			21+22
siriusopt fit	Mit IPIS optimierte			21722
Sinusopt.in	Spektralbandaufnahme		VSPEC	19
	siriusred fit"			10
siriusrad.spc	Von Geräteeinfluss bereinigt			
	Spektrallinie		VSPEC	12-18
siriusred.fit	Mit IRIS aus der Datei			
	"behandelt.fit" heraus		IRIS oder	40
	geschnittenes Spektralband.		VSPEC	18
	Siehe Schritt 17			

Seite 3

Bearbeitung von Spektralaufnahmen mit "IRIS"

Das Freeware- Programm "IRIS" kann unter <u>http://www.astrosurf.com/buil/</u> herunter geladen werden. Es kann zwischen einer französischen oder englischen Version entschieden werden. Hier ist die englische ausgewählt worden.

Hinweis 1: Die Dateinamen können frei gewählt werden, müssen aber konsequent angewendet werden, ansonsten es zu Fehlermeldungen oder gar Abstürzen des Programms kommen kann. **Alle** Dateien müssen sich im selben Ordner befinden, der in Schritt 1 ausgewählt wird.

Hinweis 2: Manchmal meldet IRIS einen Fehler, wenn der Dateinamen keine Nummerierung aufweist. Um dies zu vermeiden ist es besser, dem Dateinamen noch eine "1" anzuhängen – auch wenn es eine einzelne Datei ist. Die Nummerierung muss bei Dateien der gleichen Type lückenlos erfolgen. Maximal können 9 Dateien (sirius1.fit, sirius2.fit....., sirius9.fit) miteinander verarbeitet werden.

Wichtig: IRIS kann in der aktuellen Version (5.55) bis maximal 32'000 Graustufen (15-bit Wandler) verarbeiten. Bilddateien mit mehr Graustufen müssen vorher reduziert werden (z.B. mit Photoshop); ansonsten kappt IRIS die Daten zurecht.

Tipp: Um vorweg Fehlermeldungen bei IRIS und vor allem VSPEC zu vermeiden, empfiehlt es sich bei Dateinahmen ausschliesslich Buchstaben und Zahlen zu verwenden. Sonderzeichen führen vor allem bei VSPEC oft beim Öffnen zu Fehlermeldungen und gar Abstürzen.

Seite 4

Schritt 1; Ordnerzuweisung: Nach dem Starten von IRIS muss zuerst ein Ordner zugewiesen werden, wohin IRIS alle Dateien abspeichern kann und sich auch die zur Bearbeitung vorgesehenen Dateien (Lights, Darks und Bias – alle im FITS- Format) befinden. Mit dem Befehl "File/Settings…" erscheint folgendes Bild, das nach dem entsprechenden Ausfüllen mit "OK" bestätigt wird.

Hinweis: Zu viele Unterordner können bei IRIS zu Fehlermeldungen über nicht gefundene Dateien führen. Wahrscheinlich können zu lange Ordner- und Dateinamen ähnlichen Probleme verursachen.

Seite 5

Schritt 2; Erstellen des "Offsets": Die zu verwendenden Dateien müssen sich im bei Schritt 1 erstellten bzw. gewählten Ordner befinden: Spektralaufnahmen, Darks, Flats und Bias. Das Dateiformat ist immer *.fit. Zuerst erstellen wir aus den bestehenden Bias- Dateien die Offset-Datei. Die Bias- Dateien berücksichtigen das Ausleserauschen der CCD- Kamera und werden mit dieser bei abgedeckten Chip und kürzestmöglicher Belichtungszeit erstellt. Hier sind 5 solche Bias- Aufnahmen erstellt worden. Mit dem Befehl "Preprozessing/Make an offset…" erscheint folgendes Bild, das entsprechend ausgefüllt und mit "OK" bestätigt wird:

📃 Iris - Version 5.55	
File View Geometry Preprocessing Processing Spectro Analysis DataBase Digitalphoto Video Help	
> 이 두 만하지 S = 피 글 G · ·	
Name der Bias- Dateien	
Make an o. et Generic name : bias OK Number : 5 Cancel	
Anzahl der Bizs- Dateien	
Thurshold	
Bange Auto	
Ready	- //

Tutorial IRIS / VSPEC Version 6.2

Seite 6

Schritt 3: Unbedingt das in Schritt 2 erstellte Offset- Bild mit dem Befehl "File/Save…" und einprägsamen Namen (hier "offset.fit") speichern:

📕 Iris - Version 5.55			I I I I I I I I I I I I I I I I I
File View Geometry Preprocessing Processing S	ipectro Analysis Data Base Digital photo V	ideo Help	
■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	≣		
File/save "		Threshold	1049
"			
CL St X=	Itpu Speichern unter Speichern HUGO atistic bias1.fit bias2.fit dark302.fit bias3.fit neon_1.fit bias5.fit srius2.fit bias5.fit srius2.fit	Contraction of the second seco	
Dateinamen: "o	ffset.fit"	Speichern	M
<			
Ready		16-bits X: 69	Y: 1016 I: 51

Tutorial IRIS / VSPEC Version 6.2

Seite 7

Schritt 4; Erstellen des "Masterdarks": Jetzt mit analogem Vorgehen wie bei Schritt 3 das Masterdark erstellen; wobei die Offset- Datei durch IRIS automatisch berücksichtigt wird. Mit dem Befehl "Preprocessing/Make a dark…" erscheint das folgende Bild. Die in unserem Beispiel vorhandenen drei Darks haben als Namen "dark30" (dark301.fit, dark302.fit und dark303.fit). Kontrollieren ob "Median" ausgewählt ist.

Iris - Version 5.55	
File View Geometry Preprocessing Processing Spectro Analysis Data Base Digital photo Video	Help
Output	Threshold 32767
File Edit Make a dark Statistic: 33% 25% 192 Generic name: dark30 Generic name: dark30 offset Number: 3 Method C Sum Mes	OK Cancel
	Anzahl der Dark- Dateien
keady	16-bits X: 347 Y: 1017 II: 50

Tutorial IRIS / VSPEC Version 6.2

Seite 8

Schritt 5: Anschliessend das in Schritt 4 erstellte Masterdark unter aussagekräftigem Namen (Hier "dark30.fit") speichern. Befehl "File/Save…":

Tutorial IRIS / VSPEC Version 6.2

Seite 9

Schritt 6; Berücksichtigung der "Hotpixel": In diesem Schritt werden die "Heissen Pixels" (Hotpixels) bestimmt, die später dann aus dem Bild herausgerechnet werden. Dazu wird - wenn nicht bereits gamacht - das Masterdark geöffnet (dark.fit):

File Vertice Security Processors Security Analysis Data Basic Digital photo Velop Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto Image: Auto <th>Reservery Programmery Progra</th> <th>📕 Iris - Version 5.55 - c:\documents and setti</th> <th>ngs\urs\my documents\astronon</th> <th>iie\astrospektrografie\heppenheim\hug</th> <th>o\dark 303.fit 🔄 🗖 🔀</th>	Reservery Programmery Progra	📕 Iris - Version 5.55 - c:\documents and setti	ngs\urs\my documents\astronon	iie\astrospektrografie\heppenheim\hug	o\dark 303.fit 🔄 🗖 🔀
Image:	Image: Some of the some o	File View Geometry Preprocessing Processing Spectr	o Analysis Data Base Digital photo V	ideo Help	
Improvide the state of the	Threshold Threshold Threshold Targe Ada Threshold		۵ 🔹 🌢		
Output Öffnen Image: Comparison of the second of the	Output Öffnen ? X Suchen in: HUGO + * * * * * * * * * * * * * * * * * * *	1		Threshold	Auto
Outpu Outpu Image: Christian of the strust of the str	Output Childrin Image: Childrin		örraa		
Suchen in: HUGO Statistic * 458 Statistic * bias3.fr • bias3.fr • bias3.fr • bias3.fr • bias3.fr • bias3.fr • bias5.fr • bias5.	Statistic Statis	Outpu	Onnen		
Jalana isias1.fit idad2.fit idad3.fit idad3.fit idad3.fit idad5.fit idad4.fit idad5.fit idad4.fit idad5.fit idad5.fit	Statisti w=459 Statisti bias2.fr. bias3.fr. bias3.fr. bias3.fr. bias3.fr. bias3.fr. bias3.fr. bias3.fr. bias3.fr. bias5.fr. Dateiname: dark301.fr. dark301.f	File Er	Suchen in: 🗀 HUGO	_ ← 🛍 🔐 🎟 ·	
Dateiname: dark301.fit Dfmen Dateityp: FITS Files (".fit,".fits) Abbreche	2	Statustic x=458 Statistic	bias1.fit dark302.fit bias2.fit bias3.fit bias3.fit bias3.fit bias3.fit bias3.fit bias5.fit bias5.fit bias5.fit bias5.fit sirius1.fit	 sirius3.fit Unbenannt00.fit 	
Dateityp: FITS Files (".fit,".fits) Chibbreche	2 Abbrecht 3		Dateiname: dark301.fit	Öffnen	
2 3	2 3		Dateityp: FITS Files (".fit,".fits)	Abbreche	
		2			3
	×				•
	Ready 16-bits X: 100 Y: 1008 I: 1	Ready		16-bi	x: 100 Y: 1008 I: 1

Seite 10

Schritt 7: Nun öffnen wir das Kommandofenster und geben in dieses den Befehl ">find_hot cosme100" ein. Dies mit "Enter" bestätigen. Die Anzahl der gefundenen Hotpixel wird im Output Fenster ausgewiesen. Ist die Anzahl der Hotpixel >10' 000 erscheint eine Fehlemeldung. In diesem Fall den Wert vergrössern, bis weniger als 10'000 Hotpixels ausgewiesen werden. IRIS speichert dann diese unter der Datei "cosme.txt" für einen späteren Einsatz in dem in Schritt 1 ausgewählten Ordner ab.

Anmerkung: "100" bezieht sich auf den minimalsten Sättigungsgrad der Hotpixel, die berücksichtigt werden sollen. Je grösser dieser Wert gewählt wird, desto höher ist die Sättigung der gesuchten Hotpixel und desto weniger Pixel werden berücksichtigt. Bei zu kleinem Wert kommt es zu einer Fehlermeldung bezüglich zu vielen gefundenen Hotpixels. (Atik 314L z.B. mind. "35", ergibt etwa 5'000 Hotpixels)

Seite 11

Schritt 8; Erstellen eines "Flats": Meist wird auf das Erstellen eines "Flats" verzichtet. IRIS benötigt aber für einen reibungslosen Ablauf (è Fehlermeldung) eine Flat- Datei. IRIS bietet die Möglichkeit des Erstellens eines virtuellen Flat- Bildes. Dazu wird im Kommandofenster der Befehl ">fill 20000" eingegeben und mit "Enter" bestätigt:

Hinweis: "20000" bezieht sich auf eine sinnvolle (ca. 2/3 Maximum) Graustufe. Ein 15-bit-Wandler verfügt über 32'000 Graustufen, ein 16-bit über 64'000 Graustufen. Die aktuelle Version von IRIS (5.55) kann maximal 32'000 Graustufen verarbeiten.

Tutorial IRIS / VSPEC Version 6.2

Seite 12

Schritt 9: Das in Schritt 8 erstellte Flat- Bild unbedingt speichern; "File/Save…" oder mittelst Speicherbutton als "flat.fit":

📕 Iris - Version 5.55 - c:\documents and settings\urs\my documents\astronomie\astrospektrog	rafie\heppenheim\hugo\dark 30. fit 🔤 🗖 🔀
File View Geometry Preprocessing Processing Spectro Analysis Data Base Digital photo Video Help	
🚔 🖶 🗠 🛱 🕸 🛋 S 🗏 H 🗏 🖻 🔹 🔸	
	Threshold 2
Outou Speichern unter	
1 File © Statistic y=458 Statistic y=458 Statistic bias1.ft @ darl301.fit @ sirius2.ft bias3.ft @ darl302.fit @ sirius3.ft bias3.ft @ darl302.fit @ ubbenannt00.ft bias4.ft @ neon_1.fit bias5.ft @ darl30.fit @ sirius1.ft Dateirup: Dateirup: FITS Files (".fit) Statistic Dateirup: FITS Files (".fit) Statistic Statistic Dateirup: FITS Files (".fit) Statistic Statistic Dateirup: FITS Files (".fit) Statistic Statist	Speichern Abbrechen Mand Lhot cosme 100 2000
Ready	16-bits X: 58 Y: 1016 I: 20000

Tutorial IRIS / VSPEC Version 6.2

Seite 13

Schritt 10; Himmelshintergrund berechnen: Nun öffnen wir das erste Lightbild (sirius1.fit), das wie die beiden weiteren Lightbilder auch - die eigentliche Spektralaufnahme (Spektralband) beinhaltet. Vorgehen zum Öffnen einer Datei siehe Schritt 6. Mit dem Button "Auto" im Fenster "Threshold" (dieses kann mit dem Button "Threshold" geöffnet werden) oder mit den beiden Schiebereglern im selben Fenster kann die Sichtbarkeit des Spektralbandes optimiert werden:

Seite 14

Schritt 11: Berücksichtigung des Himmelhintergrundes

Hinweis: Falls ein nicht genau horizontal liegendes Spektralband ausgerichtet werden soll (siehe Schritte 14 und 15), ist es vorteilhaft diese Ausrichtung <u>vor</u> der Verrechnung des Himmelhintergrunds durchzuführen. Mit diesem Vorgehen werden allfällige Linienfeler auch heraus gerechnet.

Ist das Spektralband horizontal ausgerichtet, wird der Befehl: "Spectro/Remove the sky to a 2D spectra..." angewendet:

Iris - Version 5.55 - c:\documents and settings\urs\my documents\astronomy	nie\astrospektrografie\heppenheim\hugo\sirius1.fit 📃 🗖 🔀
File View Geometry Preprocessing Processing Spectro Analysis Data Base Digital photo	Video Help
Spectro/ Remove the sky to a 2D spectra	Threshold 32767
Output File Edit Hot pixels number: 37 Substraction of 0 Hot pixels number: 414 Method Hot pixels number: 10000 Method Hot pixels number: 114 Method Hot pixels number: 114 Method Parabolic Parabolic	che sky X OK Cancel
2	Command >find_hot cosme 1000 >fill 20000
Ready	▼ 16-bits X: 235 Y: 796 I: 53

Seite 15

Schritt 12: Anschliessend klicken wir je zwei Punkte oberhalb und unterhalb des Spektralbandes an. Wobei die X- und Y- Position der Punkte unwichtig ist. IRIS startet die Rechenarbeit umgehend nach dem Setzen des vierten Punktes.

Anmerkung: IRIS zieht alle drei Lightbilder ("sirius1.fit", "sirius2.fit" und "sirius3.fit"), die sich im Ordner (siehe Schritt 1) befinden zur Berechnung hinzu. Unter Umständen ist das Spektralband infolge ungenauer Nachführung nicht bei allen Aufnahmen an derselben Stelle. Deshalb Die Punkte nicht zu nahe am Spektralband setzen.

Seite 16

Schritt 13: Nun lassen wir IRIS bei allen drei Sirius- (Light-)- Spektralaufnahmen den Himmelshintergrund abziehen und unter dem Dateinamen "himmel.fit" abspeichern. Dazu öffnen wir den Befehl "Spectro/Remove the sky to a sequence of 2D spectra...". Im unter Schritt 1 bestimmten Ordner werden nun von IRIS die vom Himmelshintergrund bereinigten Lights unter den Dateinamen "himmel1", "himmel2" und "himmel3" abgespeichert:

Seite 17

Schritt 14; Geraderichten des Spektralbandes:

Hinweis: Falls nicht ausgerichtet werden muss oder soll, dann kann mit Schritt 16 weiter gefahren werden.

Mit gedrückter linker Maustaste ein Rechteck ungefähr in der Mitte des Spektralbandes ziehen und anschliessend im Fenster "Command" den Befehl ">I_ori" eingeben und mit "Enter" bestätigen. Im Fenster "Output" erscheint der Winkel mit dem das Spektralband schräge zu den Pixelzeilen liegt:

Hinweis: Es ist von Vorteil, wenn der Himmelhintergrund (siehe Schritt 11) <u>nach</u> einer eventuellen Ausrichtung vorgenommen wird. Damit werden allfällige Linienfehler mit korrigiert.

Wichtig: Das Kalibrierbild (z.B. Neon) muss um denselben Wert gedreht werden, da ansonsten die Kalibration ungenau werden wird.

Seite 18

Schritt 15: Nun mit dem Befehl "Spectro/tilt of a 2D spectra…" das Fenster "2D tilt" öffnen den im Fenster "Output" befindlichen "Angle"- Wert eingeben. Das Vorzeichen beachten! (Minus = Drehung im Uhrzeigersinn). Zuletzt diese Änderung speichern. Dies muss nun bei allen Lights des Objekts mit dem Befehl "Spectro/tilt of a 2D spectra sequence…" durchgeführt werden. Ein eventuelles Kalibrationsbild muss auch in derselben Weise ausgerichtet werden.

Wenn noch der Himmelhintergrund verrechnet werden soll, dann nun zurück zu Schritt 11. Ansonsten zum nächsten Schritt (16)

E Iris - Version 5.	5 - c:\documents and s	ettings/urs1my.dec	uments\vstronomie	histrospektrogra	die Vreppenheim)	ungolairius3.fit		
File View Georgebry	Preprocessing Processing 5	pectro Analysia Data I	Sase Digital photo Wde	a Help				
승규는 이 도 등	। ≉ाच ड∎ मा थ	⊡ @ ● ●						
Me Vew Geometry	Processing Processing S Image: Second state Imag	pectro Analysis Data	20 tilt X pening : 510 be: 10,795	Cancel	(hereshold Barge Barge	Auto		87
								2
<								>
Ready					5	16-bits 31: 340 Y: 738	1:-9	

Seite 19

Schritt 16; Verrechnen der "Lights" mit "Dark", "Offset", "Flat" und Hotpixels: Nun werden alle Zwischendateien zur Behandlung der Lights hinzugezogen. Masterdark, Offset, Flat und Hotpixels ("Cosme") kommen nun bei den drei Lights "zum Einsatz". Wir öffnen (gemäss Schritt 6) die Datei "himmel1", ziehen einen Rahmen um einen Teil des Spektralbandes und öffnen den Befehl "Spectro/Preprocessing of 2D spectra (basic)...".

Hinweis: IRIS speichert die drei "bereinigten" Bilder automatisch im in Schritt 1 gewählten Ordner ab. Der Namen dieser Dateien ist in diesem Beispiel "behandelt.fit". Im Ordner (Schritt 1) finden sich nun die Dateien "behandelt1.fit", behandelt2.fit" und "behandelt3.fit".

Schritt 17; Mitteln der bereinigten "Lights":

Option: Um Rechnerleistung zu sparen, kann als Option vorgängig die Datenmenge durch ein Freistellen der Spektralbänder mit Schritt 18 angegangen werden.

Jetzt werden die in Schritt 16 bereinigten Bilder gemittelt. Dazu öffnen wir gemäss Schritt 6 die erste Datei ("behandelt1.fit"). Anschliessend wird mit dem Befehl "Processing/Add a sequenze…" das entsprechende Fenster geöffnet und Namen der zu mittelnden Dateien, sowie derer Anzahl eingegeben. Kontrollieren ob "Median" ausgewählt ist, ansonsten anklicken. Das Resultat ist die gemittelte Datei, die nun unter aussagekräftigem Namen (Hier "siriusmit.fit") im unter Schritt 1 erstellten Ordner gespeichert werden muss:

Seite 21

Schritt 18; Freistellen und Stacken der Spektralband- Aufnahmen: Dies geschieht nach dem Öffnen der ersten Datei "behandelt1.fit" mit dem Ziehen eines Rahmens um einen geeigneten Bereich im Spektralband. Mit dem Befehl "Spectro/Composite of a sequence of spectra (2D -> 1D)..." wird die Prozedur vollzogen. In unserem Beispiel werden die aus den drei bestehenden drei Dateien ausgeschnittenen Spektralbänder als "siriusred.fit" durch IRIS automatisch im Ordner (siehe Schritt 1) abgespeichert. Anschliessend das erste freigestellte Band "siriusred1.fit" öffnen und analog Schritt 17 stacken und mit aussagekräftigen Namen (z.B. siriusopt.fit") zwecks Weiterverwendung mit VSPEC speichern.

📕 Iris - Version 5.55 - c:\documents and settings\u	ırs\my documents\astronomie\astrospekt	rografie\heppenheim\hugo\behandelt1.fi	: 🗖 🗖 🗙
File View Geometry Preprocessing Processing Spectro And	alysis Data Base Digital photo Video Help		
	• •		
		Threshold	× 24849 -251
Ausgangsdatei Vorgabe durch	Composite (sigma-clipping) Inuput sequence (2D spectra): behandelt Dutput sequence (1D spectra): siriusreduzient Sigma (rejection): 3.00 Number: 3	Cancel	ngsdatei
Anzah	I Eingangsdateien		
< Ready	101	16-bits X: 294 Y: 926	V I: -93

Seite 22

Schritt 19: Optimierung des Spektralbandes erfolgt als Option bei schlechter Dynamik mit dem Ziehen eines Rahmens um einen geeigneten Bereich im Spektralband mit dem Befehl ">I_opt" und "Enter" im Fenster "Command". Dabei werden Kontrast und Helligkeit optimiert.

Danach die Datei unter aussagekräftigem Namen ("siriusopt".fit") für die weitere Verarbeitung mit VSPEC abspeichern.

Hinweis: Diese Funktion bietet auch VSPEC an

Schritt 20; Richten einer Echelle- Kalibrieraufnahme: Beim Einsatz eines Echelle-

Spektrografen werden die Linien einer (Neon)- Kalibrierlampe verzogen. Zum Geraderichten dieser Emissionslinien wird das Bild der Kalibrierlampe (Schritt 6) geöffnet. Anschliessend wird bei einer ausgeprägten Linie, etwa in der Mitte ein kleiner Rahmen mit gedrückter Maustaste gezogen. Anschliessend wird im Fenster "Command" der Befehl ">I_slant" eingegeben und mit "Enter" bestätigt. Damit sind die Emissionslinien nun gerade und senkrecht gerichtet:

Hinweis: Dieser Schritt kann bei DADOS- Spektrografen übersprungen werden, da dieser Spaltspektrograf die Emissionslinien gerade abbildet.

Schritt 21; Zusammenfügen einzelner Spektralband- Aufnahmen: Die zusammenzufügenden Spektren müssen sich im unter Schritt 1 zugeordneten Ordner befinden. Im Kommandofenster den Befehl ">qm file1 file2 5" eingeben. "5" ist der universelle Parameter für den Zusammensetzungsprozess. Dann "Enter" drücken und das Auswählen eines Sterns im ersten Bild quittieren. Mit dem nun erscheinenden Kreuz eine auffällige Absorptions- oder Emissionslinie im Überlappungsbereich und möglichst in der Mitte anklicken:

Tutorial IRIS / VSPEC Version 6.2

Seite 25

Schritt 22: Beim zweiten Bild ebenfalls anstelle eines Sterns dieselbe Absorbtions- oder Emissionslinie anklicken und "IRIS" knüpft die beiden Spektralbänder zusammen. Anschliessend unter aussagekräftigem Namen speichern ("siriuscomp.fit")

📙 Iris -	Versio	n 5.5	7												
File Vie	w Geome	etry F	reprocessing	Processing	Spectro	Analysis	Data Base	Digital photo	Video	Help					
6	1 in 1	- 1	₩ xI	🖲 🖪 H	<u>i</u> 2	1 🔹	•								
															^
														_	
											Threshold			×	
											-			32767	
											∏———			0	
											Bange	Auto	1 -		
															=
								Co	mmand						
								>i D	qm himmel X=608.58	1 himmel2 5 4286 DY=7.201418	""Comp	oos <mark>it"-</mark> l	Bereich		
								>							
												-			
									-						
															~
Noodu												16-bite V: 750	V. 942 T. 10		2
Reauy												10-DICS A: 759	1.043 1:-10		11

Seite 26

Reduktion und Kalibrierung mit "VSPEC"

Das Feeware- Programm "VSPEC" kann unter <u>http://www.astrosurf.com/vdesnoux/</u> herunter geladen werden.

Schritt 1; Ordnerzuweisung: Die beiden verfügbaren Sprachen (Französisch und Englisch) werden im Fenster "Preferences…" das nach dem Befehl "Options/Preferences…" erscheint, im Register "Language" ausgewählt. Ebenfalls im Fenster "Preferences…" muss im Register "Workingdirectory" der Pfad zum Ordner, wo sich die - zum Beispiel mit IRIS (siehe oben) - vorbearbeitete Spektralaufnahme (siehe oben) befindet, mit Doppelklick eingegeben werden:

🛠 Visual Spec	
File Tools Assistant Options ?	
🚍 🔀 🛃 🛛 7 0 ; 0 I I 🧕	
Preferences Sprache Preferences References Preferences Header Ordner Ordner	

Schritt 2; Optimieren des Spektralbandes: Nun öffnen wir das zu bearbeitende Spektralbandbild "siriusopt.fit". Helligkeit und Kontrast können mit **langsamem** Verschieben der Maus mit gedrückter linken Taste und horizontaler bzw. vertikaler Bewegung – innerhalb des Spektralbandes - optimiert werden. Die Werte werden oben links in der Statuszeile ausgewiesen. Diese Werte können auch direkt in den beiden Fenster verändert werden:

Hinweis: Dieses Optimieren des Spektralbandes kann auch mit IRIS (Schritt 19) vorgenommen werden.

Seite 28

Schritt 3: Reduktion (Binnen) des Spektralbandes: Nun wird mit dem Button "Object binning" das Spektralband auf ein Spektralprofil reduziert. Sicherheitshalber als "siriuslinie.spc" speichern.

Hinweis: Falls das Spektralband infolge der Bildbearbeitung an den obigen und/oder unteren Rändern "ausgefranst" ist, empfiehlt sich vor dem Binnen ein Vorgehen mit dem Markierbereich wie in Schritt 5 beschrieben.

Seite 29

Schritt 4; Kalibration: Das Kalibrierspektrum (z.B. "neon.fit") öffnen:

Hinweis: Die Schritte 4 bis 9 erklären das Vorgehen mittelst Kalibrierspektrum von einer Neon-Glimmlampe. Sind im Rohspektrum genügend Peaks bekannter Wellenlängen (z.B. Balmerlinien) vorhanden, können die Schritte 4 bis 8 übersprungen werden und direkt mit Schritt 9 fortgefahren werden. Die Beschreibungen gelten dann natürlich für das Roh- und nicht mehr für das Kalibrierspektrum.

Seite 30

Schritt 5: Mit dem Button "Display reference binnig zone" den Markierbereich aktivieren:

Schritt 6: Mit Mauszeiger in diesen rot umrandeten Markierbereich fahren, linke Maustaste gedrückt halten und über die Emissionslinien des Neonspektrums ziehen:

Hinweis: Mit dem Anklicken und Ziehen des oberen Randes kann - wenn notwendig - die Höhe des Markierbereichs angepasst werden,.

🕷 Visual Spec	J 🗙
File Windows Options ?	
🚍 🔀 🛃 🖬 7 [412; 57] I 96.0 -\/-O. (Å/pixel)	
梦 20214 チョロー 姜 😮 凾 🇮 🔜 🌇 🔉	
🗸 intensity 💽 💸 🗖 blue 🔄 😥 848 848 Reference binning 🚳 🦗 🚄 🖓 🔊 🖉 🚔 🍐 🎊 👫 🚜 🔯 💠	
	~
	>
CADocuments and SettingsturstMy	

Seite 32

Schritt 7: Mit Anklicken des Buttons "Reference binning" das Kalibrier- Spektralprofil in dasjenige des Objekts integrieren.

Wichtig: Objekt- und Kalibrationsspektrum müssen mit genau derselben Gitterstellung des Spektrografen aufgenommen worden sein

Tutorial IRIS / VSPEC Version 6.2

Seite 33

Schritt 8 (Option): Falls das Kalibrierspektrum aus Schritt 6 öfter verwendet wird, ist es sinnvoll und hilfreich bei zwei bekannten Linien derer Wellenlängen im Register "References" des Fensters "Preferences…", das mit dem Befehl "Options/Preferences…" geöffnet wird, fest einzugeben; ansonsten diesen Schritt überspringen und direkt von Schritt 7 zu Schritt 9.

Referenzspektrum: Siehe Anhang 1; Kalibrierlampe DADOS

Schritt 9: Kalibration von Spektralbänder, die mit linearen Gittern entstanden sind (2-Punkt- Kalibrierung)

Hinweis: Ist die Spektralaufnahme mit Hilfe eines Prisma oder nichtlinearem Gitter (DADOS) erstellt worden muss gemäss Schritt 26 kalibriert werden

Mit dem Befehl "Spectrometry/Calibration 2 lines" wird die Kalibration gestartet. Das Spektralprofil des Objektes verschwindet und es ist nur noch das Kalibrierspektralprofil sichtbar. Nun nahe des ersten der bekannten "Peaks" (der kleineren Wellenlänge; also links liegenden) mit der linken Maustaste anklicken und diese gedrückt halten und über diese Linie fahren. Dabei spielt es keine Rolle, ob von links oder von rechts über die entsprechende Emissions- bzw. Absorptionslinie gefahren wird. Nach dem Loslassen der Maustaste erscheint nun der kleinere Wellenlängenwert, der im Register "References" (Schritt 7) eingegeben worden ist. Wenn notwendig – z.B. bei Verwendung einer anderen Emissions- oder Absorptionslinie, mit anderem Wert als in Schritt 8 eingegeben – kann dieser Wert noch geändert werden. Nach dem Drücken von "Enter" wird dieser Wert übernommen und nun kann mit der zweiten Wellenlänge gleich verfahren:

Referenzspektrum: Siehe Anhang 1; Kalibrierlampe DADOS

Tutorial IRIS / VSPEC Version 6.2

Seite 35

Schritt 10: Nach dem Drücken von "Enter" in Schritt 9 erscheint wiederum das Spektrum des Objekts. Aus Sicherheitsgründen empfiehlt es sich, diese Datei mit dem Befehl "File/save as.." als *.dat-, *.spc- oder *.fit- Datei mit aussagekräftigem Namen (z.b. "siriuskal.spc") abzuspeichern:

Seite 36

Schritt 11; Gradation, Kennzeichnungen: Es gibt verschiedene Möglichkeiten, das vorhandene Spektrum noch mit Gradation oder speziellen Kennzeichnungen zu versehen.

Schritt 11a: Mit einer Gradation:

Schritt 11b: Kennzeichnung einzelner Wellenlängen. Dabei wird die gewünschte Emissions- oder Absorptionslinie mit gedrückter Maustaste analog Schritt 9 überstrichen. Anschliessend die rechte Maustaste drücken und im sich öffnenden Kontextfenster "Label" anklicken. Dies kann bei mehreren Emissions- oder Absorptionslinien erfolgen:

Seite 37

Hinweis 2: Mit dem Befehl "Format/Graphic…" wird das Fenster "Graphic" aufgerufen. In diesem kann die Gradierung angepasst werden. Unterer und Oberer Wellenlängenbereich, die Anzahl, bzw. Grösse der Einzelschritte in der X- Achse (Wellenlänge) können optimiert werden. Dazu darf im Kästchen "Auto" kein Häkchen sein:

Tipp: Soll das Linienspektrum samt Gradierung und Kennzeichnung "1:1" abgespeichert werden, geschieht dies am besten über eine bmp- Datei: "File/Export bmp".

Schritt 12; Korrektur der gerätespezifischen Einflüsse auf das kalibrierte Spektralprofil. (Relative Radiometrische Profilkorrektur):

Zuerst das kalibrierte Spektralprofil (Rohspektrum; hier: "siriuskal.fit") öffnen und die Spektralklasse des Sterns (Sirius, Alp Can Maj) mit dem Befehl "Tools/Spectral type..." bestimmen.

Wichtig: Das Rohspektrum muss kalibriert sein. Ansonsten ist der Zuzug eines Vergleichsspektrums natürlich nicht möglich

Anmerkung: Dazu wird das Programm MS Office EXCEL benötigt; dort muss zuerst das Aktivieren von Makros unter "Extras/Makros/Sicherheit…" mit "mittel" oder "niedrig" erlaubt werden.

-K Visual Spec
File Edit Format Operations Spectrometry Radiometry Tools Assistant Window Options ?
🚍 🔀 🛃 🖡 L 413 ; 5175.61 1 463760.0 -\/-4.0247 (Å/pixel)
🔽 intensity 🔄 🗞 🗉 blue 💽 🚛 👥 📶 😎 💐 🔍 🏹 🕎 🐝 ᢞ 🖄 🖉 🔛 😖 🔺 🏠 🖄
≝ siriusliniegrad.spc
1 "Tools/Spectral type Image: Search of spectral type
"Klick"

Schritt 13: Mit dem Befehl "Tools/Library..." geeignetes Standartprofil für (hier) Sirius anwählen (z.B. a0iv.dat) und mit gedrückter, linker Maustaste ins Fenster des Spektralprofiles ziehen:

Seite 40

Schritt 14: Nun wird das Spektralprofil des Sterns mit dem ausgewählten Standartprofil dividiert. Zuerst das Sternspektrumprofil anklicken (oben links im Kästchen steht nun "intensity"). Alternativ kann das Kontextmenue dieses Kästchen geöffnet und "intensity" ausgewählt werden. Anschliessend wird der Befehl "Operations/Divide profile by a profile…" ausgeführt und im sich öffnenden Fenster wird das ausgewählte Standartprofil angeklickt (a0iv.dat). Im Kästchen "Normalize and replace" darf kein Häkchen stehen. Ansonsten in dieses Kästchen klicken und zuletzt "OK" anklicken. Es entsteht im Fenster neben Stern- (intensity) und Standartprofil (a0iv.dat) die neue Kurve "Division". Diese Kurven können auch alle im Kontextmenue oben links im Befehlsbalken aufgerufen werden

Tutorial IRIS / VSPEC Version 6.2

Seite 41

Schritt 15: Nun wird die neue Profilkurve isoliert. Zuerst mit dem Button "Erase graphic" alle drei Kurven im Fenster löschen. Anschliessend im Kontextmenue oben links im Befehlsbalken "Division" auswählen und das Profil "Division" erscheint im Fenster.

Seite 42

Schritt 16: Jetzt wird die im Schritt 15 isolierte "Divisions"- Kurve zum Kontinuum geglättet. Dazu wird der Befehl "Radiometry/Continuum automatique" eingesetzt und es entsteht die geglättete Kurve "scaleN.Division":

Hinweis: Sollte infolge zu "lebendiger" Kurve das Kontinuum befriedigend ausfallen, ist es empfehlenswert nach der "manuellen" Methode ab Schritt 19 vorzugehen.

Schritt 17: Für eine spätere Verwendung bei weiteren Spektren (mit gleichen Bedingungen; Teleskop, Kamera, Gitterstellung etc.) kann diese Kurve abgespeichert werden. Wenn nicht gewünscht, dann weiter mit Schritt 18.

Zuerst mit dem Button "Replace" das Auswahlmenü öffnen, dann "intensité" ausgewählen und nach dem Klick auf "OK" wird das Kontinuum zu "intensity". Jetzt wird die Kurve "intensity" analog Schritt 15 isoliert und anschliessend unter aussagekräftigem Namen ("gerätekurve.spc") abgespeichert:

Schritt 18: Jetzt wird das kalibrierte Spektrum durch die Gerätekurve dividiert. Damit werden die verfälschenden Einflüsse vom Teleskop bis und mit Kamera zu einem grossen Teil korrigiert.

a; Von Schritt 16 kommend: Analog Schritt 15 alle Kurven im Fenster mit dem Button "Erase graphic" löschen und im Kontextmenü oben links "intensity" öffnen. Anschliessend mit dem Befehl "operations/Divide profile by a profile..." wie bei Schritt 14 durch "scaleN.Division" dividieren. Nun diese neue Kurve "Division" wie in Schritt 15 beschrieben isolieren, anschliesswend auf "intensity" (siehe Schritt 17) umbenennen und unter aussagekräftigem Namen ("siriusrad.spc") speichern.

b: Von Schritt 17 kommend: Das kalibrierte Rohprofil "siriuskal.spc" und die Gerätekurve "gerätekurve.spc" öffnen. Beide Profile lauten momentan auf "intensity". Die Gerätekurve muss analog Schritt 17 mit "Replace" umbenannt werden. Hier wird "Ref1" gewählt. Nun wird das Fenster des Rohspektrums ("siriuslinegrad.spc" angeklickt und analog Schritt 14 mit dem Befehl "Operations/divide profile by a profile" verfahren, indem "siriuskal.spc" mit "Ref1" dividiert wird. Das vom Geräteeinfluss korrigierte Siriusprofil erscheint nun unter dem Namen "Division" im Profilfenster. Nach der Isolation gemäss Schritt 15 und einem Umbenennen analog Schritt 17 zu intensity, kann dieses normierte Profil unter aussagekräftigem Namen gespeichert werden. Hier "siriusrad.spc":

Schritt 19; Kontinuum aus Spektralprofil entfernen (Flachdarstellung):

Das **kalibrierte** Spektralprofil "siriuskal.spc" öffnen. Den Befehl "Radiometry/Compute Continuum..." aufrufen. Es erscheint eine neue Toolbar. Dort den Softkey "point/courbe" anklicken und einzelne Punkte **zwischen** den Emissions- und Absorbtionslinien anklicken. Danach den Softkey "Execute" anklicken. Mit dem erscheinenden Popupregler kann die Kurve falls notwendig näher anzugleichen versucht werden (Grosse Zahl, Häkchen bei "x10".

Schritt 20: Wie bereits bei Schritt 18 beschrieben wird nun das Rohspektralprofil durch den Kontinuumsverlauf dividiert. Dazu werden zuerst analog Schritt 15 mit dem Button "erase graphic" alle Linien im Fenster gelöscht und dann die Kurve mit Auswahl von "intensity" im oberen linken Fenster im Befehlsbalken geöffnet. Anschliessend - wie bereits in Schritt 18 beschrieben - mit dem Befehl "Operations/Divide profile by a profile..." die "intensity"-. Kurve mit der Kurve (Kontinuum) "Fit intensity" dividieren. Es entsteht die flache, vom Kontinuumsverlauf bereinigte, neue Kurve "Division". Freistellen und Abspeichern wie in den Schritten 15 und 17 beschrieben.

Schritt 21; Normieren: Damit Spektren untereinander verglichen werden können, z.B. für das Erkennen objektiver Veränderungen oder für einen Vergleich von Äquivalenzbreiten von Absorptions- und Emissionslinien müssen die Spektren entsprechend normiert werden. Im kalibrierten Profil einen grösseren Bereich mit gedrückter, linker Maustaste auswählen. Dieser sollte möglichst dem Kontinuum folgen und möglichst keine Linien aufweisen. Im Befehlsbalken kann die Wellenlänge abgelesen werde, wo sich die senkrechte, rote Linie gerade befindet.

Seite 48

Schritt 22: Unter dem Befehl "Options/Preferences/Continuum die Wellenlängen des gewählten Abschnittes eingeben und anschliessend den Button "Normalize" anklicken. Die Kurve ändert sich dabei nicht; es wird aber die Skalierung der Y- Achse angepasst. Anschliessend das normierte Profil unter aussagekräftigem Namen speichern ("siriusnorm1.spc")

Seite 49

Schritt 23; Messen von Spektralinformationen:

Folgende Grössen können mit VSPEC aus einem kalibrierten und normierten Spektralprofil herausgemessen werden:

- SNR: Signal- Rauchverhältnis des Spektralprofils grösser = besser
- FWMH: Full Width ad half Maximum Height (mehrere Messungen sinnvoll)
- LEQ: Line Equivalent Width (mehrere Messungen sinnvoll)
- Line Center Wellenlänge der Spektrallinie ("Line centre")

siehe auch: http://spektroskopie.fg-vds.de/wiki/doku.php

Mit gedrückter, linker Maustaste den gewünschten Bereich überstreichen. Mit rechter Maustaste das Popup- Menü aufrufen und Computation anklicken. Gewünschte Messwerte anklicken und nach "OK" erscheinen diese in einem blauen Fenster

Seite 50

Schritt 24; Bestimmen der Plancktemperatur:

Das radiometrisch korrigierte Spektralprofil (hier "siriusrad.spc") öffnen. Analog der Schritte 16 und 17 das Kontinuum isolieren. Mit gedrückter, linker Maustaste gewünschter Bereich (hier ca. 5000 – 7000 Angström überstreichen und mit dem Button "Crop profile" ausschneiden:

Seite 51

Schritt 25: Dann Befehl "Radiometry/Planck..." wählen. Im sich öffnenden Fenster den ungefähr zu erwartenden Wert in [K] eingeben und solange ändern, bis die eingeblendete Kurve im gewünschten Bereich parallel zum Kontinuum verläuft:

Schritt 26: Kalibration nichtlinearer Spektren: Mit "Open Profile" das zu kalibrierende Rohspektrum laden und mit dem Befehl "Spectrometry/Calibration multiple lines" das Parameterfenster öffnen.

Hinweis: Soll mit einem Kalibrierspektrum kalibriert werden, dann vorgängig die Schritte 4 bis 8 ausführen

Schritt 27: Nun werden die bekannten Wellenlängen (mindestens drei) mit dem Überstreichen der Peaks mit dem Cursor und gedrückter linker Maustaste aktiviert und das sich öffnende Feld "Lambda" mit der entsprechenden Wellenlänge überschrieben und mit "Return" quittiert. Nach der Eingabe des letzten, hier dritten, Punktes den Button "Calcul" im Parameterfenster anklicken. Danach geht zusätzlich das Dispersionsfenster auf. Mit "Close" werden beide Fenster geschlossen und die Spektrallinie kalibriert.

Hinweis 1: Der Wert "Degre" wird als 3 vorgegeben und muss um "1" kleiner sein, als die Anzahl der Referenzpunkte; wird aber von VSPEC automatisch berücksichtigt.

Hinweis: Ausser der H-alpha-Linie (6563 Angström) sind die anderen Werte bei diesem Beispiel nur näherungsweise gewählt worden. Das Resultat wird demzufolge entsprechend falsch werden.

Weitere Bearbeitung ab Schritt 11

Fragen, Anregungen, Meldung bitte an: astronomie@ursusmajor.ch Ersigen, 20.03.2010 Urs Flükiger

Tutorial IRIS / VSPEC Version 6.2

Seite 54

Anhang 1:

Emissionslinien Kalibrierlampe DADOS (ArNe)

Seite 55

	Stichwort	Program	Seite
		m	
Anhang 2	Ausrichten Echelle- Kalibrieraufnahme	IRIS	23
Stichwortrogistor	Ausrichten schräger Spektralbänder	IRIS	17
Suchwornegister	Ausschneiden des Spektralbandes	IRIS	21
	Bias; Mitteln è Offset	IRIS	5
	Binnen Spektralaufnahme	VSPEC	27
	Dark; Verrechnen	IRIS	19
	Echelle- Kalibrieraufnahme; Ausrichten	IRIS	23
	Flat; Erstellen	IRIS	11
	Flat; Verrechnen	IRIS	19
	Freistellen des Spektralbandes	IRIS	21
	Geräteeinfluss; Berücksichtigung	VSPEC	38
	Gradierung von Spektralprofilen	VSPEC	36
	Himmelshintergrund; Berechnen	IRIS	13
	Hotpixel; Berücksichtigen	IRIS	9
	Kalibrieren von Spektralprofilen	VSPEC	29
	Kennzeichnung bei Spektralprofilen	VSPEC	36
	Kontinuum aus Spektralprofil entfernen	VSPEC	45
	Kontinuum erstellen; Geräteeinfluss	VSPEC	38
	Masterdark; Erstellen	IRIS	7
	Messen von Spektralfunktionen	VSPEC	49
	Mitteln der bereinigten Lights	IRIS	20
	Nichtlineare Spektren kalibrieren	IRIS	52
	Normieren eines Spektralprofils	VSPEC	47
	Offset; Erstellen	IRIS	5
	Offset; Verrechnen	IRIS	19
	Optimieren des Spektralbandes	IRIS	22
	Ordner; Zuweisung	IRIS	4
	Plancktemperatur; Bestimmen	VSPEC	50
	Reduktion der Spektralaufnahme	VSPEC	27
	Richten Echelle- Kalibrieraufnahme	IRIS	23
	Stacken der Sektralbänder	IRIS	21
	Verrechnen der Lights mit Dark, Offset und Flat	IRIS	19
	Zusammenfügen einzelner Spektralbänder	IRIS	24

Seite 56

	Datei- Inhalt	Beispiel	Bemerkungen
	Light	sirius1.fit sirius2.fit	Effektive Aufnahme
		usw	
Anhang 3	Bias	bias1.fit	Dunkelbild
Alliang 5		bias2.fit	
Dateibezeichnungen		usw	
IRIS	Dark	dark1.fit	Berücksichtigung
		dark2.fit	Verstärkerrauschen
		usw	
	Offset	offset.fit	Entsteht aus gemittelten Darks
	Flat	flat.fit	Wird mit IRIS erstellt (Schritt 8)
	Hotpixels	cosme.lst	Wird mit IRIS eruiert und automatisch gespeichert (Schritt 6)
	Himmelshintergrund	himmel1.fit himmel2.fit usw	Wird durch IRIS errechnet und gespeichert (Schritte 10- 13)
	Vom Himmelshintergrund	siriusber1.fit	Wird durch IRIS automatisch
	bereinigte, mit Dark, Offset, Hotpixel und Flat bereinigte Light	siriusber2.fit usw	gespeichert (Schritt 16)
	Spektralband aus	siriusband1.fit	Wir durch IRIS erstellt und
	Aufnahme ausschneiden	siriusband2.fit	automatisch gespeichert
	Nittele des	USW	(SCIIIIII 18)
		sinusvspec.flt	
	Spektraibander		IN VSPEC (IKIS Schritte 18+17)
	Zusatz- Option:	siriusvspec.fit	Siehe IRIS Schritt 19
	Optimiertes Spektralband		

Siehe auch Anhang 5

Seite 57

Anhang 4 Dateibezeichnungen	Datei- Inhalt	Beispiel	Bemerkungen	
	Rohprofil	siriusprofil.dat	VSPEC Schritte 2+3	
	Kalibriertes Spektralprofil	siriuskal.dat	VSPEC Schritte 4-10	
	Gradiertes Profil	siriusgrad.bmp	VSPEC Schritt 11	
	Geräte- bzw.	siriuskor.dat	VSPEC Schritte12-18	
	Kontinuumsbefreites		bzw. Schritte 19+20	
	Spektralprofil			
	Normiertes Spektralprofil	siriusnorm.dat	VSPEC Schritte 21+22	

Siehe auch Anhang 5

Seite 58

	Datei- Inhalt	Bezeichnungsinhalt *)	Beispiele			
Anhang 5: Dateibezeichnu	Lights	Objekt/Gitter/Datum/Nr	sirius900100420091.fit sirius900100420092.fit sirius900100420093.fit neon900100420091.fit			
ngen für die Ablage	Darks	Dark/Belichtungszeit(s)/Nr.	dark301.fit dark302.fit dark303.fit			
	Spektralband mit IRIS bearb. Objekt/Gitter/Datum/IRIS		sirius90010042009iris.fit			
	Rohspektrum unkalibriert	Objekt/Gitter/Datum	sirius90010042009.spc			
	Kalibriertes Spektrum	Objekt/Gitter/Datum/Kalibration	sirius90010042009kal.spc			
	Formatiertes Spektrum	Objekt/Gitter/Datum	sirius90010042009kal.bmp			
	Normiertes Spektrum	Objekt/Gitter/Datum/Normierung - auf Kontinuumsfläche - auf Kontinuumspeak - auf profileigenes Kontinuum - Radiometrische Fluxkalibration	sirius90010042009flat.spc sirius90010042009peak.spc sirius90010042009cont.spc sirius90010042009rad.spc			
Ablageordner:						
C/Eigene Dateien/Astronomie/Spektroskopie/Objekt/Datum						

*) Datum = Aufnahmedatum

Anhang 6: Glossar

Stichwort	Bereich	Erklärung
Absorptionslinie	Spektroskopie	Dunkle Linie im Spektrum (Fraunhoferlinien)
Analoge Fotografie	Bildbearbeitung	Bildaufnahme auf chemischem Film
Angström	Spektroskopie	Masseinheit für die <i>Wellenlänge</i> im sichtbaren Lichtbereich. Heute veraltet. Nach ISO: <i>Nanometer</i> (nm)
Äquivalentbreite	Spektroskopie	Die Breite eines Rechtecks, welche die gleiche Fläche ausweist wie das Integral einer Absorptionslinie in einem Spektrum, wo das <i>Kontinuum</i> auf 1 normiert ist. Die Höhe dieses Rechtecks ist von 0 bis 1. damit ist das Integral des Rechtecks gleich der Absorptionslinie. Emissionslinien haben negative Äquivalentbreite (English: Equivalent Width oder <i>EW</i>). Im Gegensatz zu z.B. der Linientiefe, ist die <i>EW</i> unabhängig von der <i>Spaltfunktion</i> des <i>Spektrografen</i> .
Astrospektrografie	Spektroskopie	Spezialgebiet der Spektroskopie. Zusammensetzung, Bewegungen und physische Eigenheiten können mit Hilfe der <i>Astrospektroskopie</i> untersucht werden. Ist ein sehr wichtiges Wissensgebiet der Astrophysik
Atmosphären- Korrektur	Spektroskopie	Das Entfernen der <i>tellurischen Linien</i> ; entweder mittelst eines gemessenen Referenzspektrums oder einer Modellierung der Erdatmosphäre
Auflösung	Spektroskopie	Der Abstand (in Nanometer oder <i>Angström</i>) zwischen zwei <i>monochromatischen</i> Spektrallinien, welche vom <i>Spektrograf</i> noch gerade getrennt werden können. Oft gleichgesetzt mit <i>Halbwertsbreite</i> der <i>Spaltfunktion</i>
Aufspaltungsbild	Spektroskopie	Spektrallinie, nach Reduktion, Normierung und Kalibration der Spektralaufnahme
Balmerlinien	Spektroskopie	Emissionslinien des Wasserstoffs (Hα, Hα, Ηγ, Ηδ)
Belichtungszeit	Bildbearbeitung	Je nach Lichtstärke des Objekts benötigt es eine gewisse Zeitspanne, wo das Licht auf <i>Sensor</i> oder Filmemulsion einwirken kann, um bei <i>Pixel</i> bzw. Emulsionspartikel die erwarteten Reaktionen auszulösen
Beugungsgitter	Spektroskopie	Optisches Gitter, das mittelst Reflektion (Reflektionsgitter) oder Interferenz (Transmissionsgitter) einen Lichtstrahl in sein Spektrum aufspaltet.
Bias	Bildbearbeitung	Mit abgedecktem Sensor bei kürzestmöglicher <i>Belichtungszeit</i> mehrere Aufnahmen anfertigen und diese <i>mitteln</i> . Diese Aufnahmen enthalten das <i>Verstärkerrauschen</i> . Wird in Verbindung mit <i>Masterdarks</i> zur Skalierung bei unterschiedlicher <i>Belichtungszeiten</i> benötigt.
Bildbearbeitung	Bildbearbeitung	è Digitale Fotografie:
Blazegitter	Spektroskopie	Spezielles <i>Reflektionsgitter</i> mit Sägezahnartiger Gitterstruktur das für engere Wellenlängenbereiche optimiert wird è <i>Echellegitter</i>
Blazewinkel	Spektroskopie	Anstiegswinkel der Sägezahnstruktur beim Blaze- bzw. Echellegitter
CCD- Kamera	Bildbearbeitung	è Digitalkamera
CMOS- Kamera	Bildbearbeitung	è Digitalkamera
Coolpixels	Bildbearbeitung	Fehlerhafte <i>Pixel</i> , die bei einer anormal niedrigen Empfindlichkeit hohe Werte aufweisen. Mit <i>Flats</i> können diese vom <i>Light</i> eliminiert werden. Siehe auch è <i>Hotpixels</i>
Dark	Bildbearbeitung	Bei der <i>Digitalen Fotografie</i> : Unter denselben Bedingungen (Belichtungszeit, ISO- Wert, Chiptemperatur) wie die <i>Lights</i> , werden mehrere Bilder mit abgedecktem <i>Sensor</i> erstellt und zum Zwecke eines besser <i>Signal-</i> <i>Rauschverhältnisses gemittelt</i> . Die <i>Subtraktion</i> dieses <i>Masterdarks</i> von den einzelnen <i>Lights</i> , werden die <i>Hotpixels</i> und das <i>Verstärkerrauschen</i> heraus gerechnet
Detektor	Bildbearbeitung	Nachweis- oder Aufzeichnungsgerät; beim Astrografen in der Regel eine Kamera
Digitale Fotografie	Bildbearbeitung	Aufnahmeverfahren mittels CCD- oder CMOS- Sensor. Ersetzt heute zu einem sehr grossen Teil die analoge Fotografie
Digitalisierung	Bildbearbeitung	Ubersetzung einer Anzahl von Elektronen in einem <i>Pixel</i> nach dem è <i>Pixelwert</i>
Digitalkamera Dispersion	Bildbearbeitung Spektroskopie	Mit einem CCD- oder CMOS Sensor ausgestattetes Bildautnahmegerät Mass für die Länge eines Spektrums; oft ausgedruckt in Nanometer / Pixel.
	-	Nicht zu verwechseln mit der Auflösung
Dispersionsrichtung	Spektroskopie	Richtung der Länge des Spektrums (parallel zur <i>Wellenlängen- Achse</i>). Bei einem <i>Spaltspektrografen</i> senkrecht zur abgebildeten Spalthöhe (Die Höhe ist grösste Dimension im Gegensatz zu Spaltbreite)
Division	Bildbearbeitung	Negative Multiplikation;
Dunkelbild	Bildbearbeitung	è Dark
Echellegitter	Spektroskopie	Ähnlicher Aufbau wie das Blazegitter aber mit deutlich höherem Blazewinkel;

Seite 60

Stichwort	Bereich	Erklärung
		meist >45°
Elektromagnetische Wechselwirkung	Spektroskopie	Als Folge entstehen unter anderem die für die Astrospektroskopie wichtigen Absorptionslinien infolge der Elektromagnetischen Wechselwirkung zwischen Photonen und Materie
Emissionslinie	Spektroskopie	Helle Linie im Spektrum
Erste Ordnung	Spektroskopie	è Ordnung
EW	Spektroskopie	è Äquivalentbreite
Farbe	Spektrografie	è Sichtbare Farbe
Flat	Bildbearbeitung	Bei der <i>Digitalen Fotografie:</i> Mit denselben Einstellungen wie bei den <i>Lights</i> gegen eine homogene, helle Fläche mehrere Aufnahmen schiessen und <i>mitteln</i> . Mit der <i>Division</i> dieses <i>Masterflats</i> werden Staub und andere gerätinterne (Spektrograf) "Störungen" herausgerechnet.
Fraunhoferlinien	Spektroskopie	è Absorptionslinien
FWHM	Spektroskopie	Full Width at Half Maximum è Halbwertsbreite
Gitter, optisches	Spektroskopie	Beugungsgitter; ausgeführt als <i>Transmissions-</i> oder <i>Reflektionsgitter</i> . Spaltet einen Lichtstrahl in sein (<i>Farben-</i>) <i>Spektrum</i> auf.
Glasfaser	Spektroskopie	Sehr dünn gezogener, flexibler Faden aus Kunststoff. Diameter zwischen 50 und 600 Mikrometer. wird als <i>Lichtwellenleiter</i> zwischen Teleskop und Spektrografen eingesetzt
Halbwertsbreite	Spektroskopie	Die Breite der Spaltfunktion auf halber Höhe vom Maximum
Hintergrund	Spektroskopie	Licht vom Himmel neben dem (Ziel-) Stern, dessen Spektrum sich oben und unter dem Sternspektrum befindet; muss vom Sternspektrum abgezogen werden. Mit der <i>Hintergrundkorrektur</i> kann auch ein Teil des <i>Streulicht</i> s korrigiert werden.
Hintergrundkorrektur	Bildbearbeitung	Subtraktion des – Spektrums vom Spektrum des Zielobjekts
Hotpixels	Bildbearbeitung	<i>Fehlerhafte Pixel</i> , die bereits ohne eigentliche Belichtung eine anormal hohen Wert aufweisen. Mit <i>Darks</i> können diese vom <i>Light</i> subtrahiert werden. Siehe auch è <i>Coolpixels</i>
Hüllkurve	Spektroskopie	è Pseudokontinuum
Interferenz	Spektroskop	Phasenrichtige Überlagerung von Lichtwellen
Kalibrierspektrum	Spektroskopie	è Vergleichsspektrum
Kalibrierung	Spektroskopie	Zuordnung der <i>Pixel</i> position eines <i>Spektrums</i> zur <i>Wellenlänge</i> . Zum Beispiel anhand von <i>Vergleichsspektren</i> oder <i>Kalibrierspektren</i> von Vergleichslichtquellen (z.B. Ne-Lämpchen) bekannten <i>Wellenlängen</i>
Kamera	Bildbearbeitung	Analoge- oder digitale <i>CCD-/ CMOS- Kamera</i> ; vorzugsweise monochrom. Auch abbildende Linse im <i>Spektrografen</i>
Kollimator	Spektroskop	Parallelisiert die vom <i>Objektiv</i> gesammelten <i>Licht</i> strahlen und führt diese zum <i>Beugungsgitter</i> .
Kontinuum	Spektroskopie	Intensitätsniveau eines stellaren Spektrums ohne Absorptionslinien (mathematischer Idealfall). Bei Spektren mit vielen Linien (z.B. kühle Sterne) oder Spektrografen mit niedriger <i>Auflösung</i> schwer zu bestimmen (è <i>Pseudokontinuum</i>); Kontinuierlicher , strukturloser (ohne Linien) Strahlungsuntergrund im Spektrum. Meist der Planckkurve angenähert.
Kontinuum	Spektrografie	Der Bereich, innerhalb dessen alle Werte einer physikalischen Grösse lückenlos und stetig zusammenhängen. Die Annahme eines Kontinuums stellt häufig eine Idealisierung dar
Licht	Spektroskopie	è Sichtbares Licht
Lichtwellenleiter (LWL)	Spektroskopie	Verbindungsstück - meistens eine <i>Glasfaser</i> - um Licht ohne Optik von einer Stelle zu einer anderen zu leiten; in der Spektroskopie über einige Meter, in der Telekommunikation über viele Kilometer hinweg
Light	Bildbearbeitung	è Lightbild
Lightbild	Bildbearbeitung	Digitale Fotografie: Das eigentliche Bild der Digitalkamera è Dark, Flat, Offset
Littrow	Spektroskopie	Ein Spektrografentyp, bei dem die Einfalls- und Austrittswinkel auf dem <i>Beugungsgitter</i> gleich dem <i>Blazewinkel</i> sind. Liefert höchste Effizienz, aber ist mechanisch anspruchsvoll und anfällig für <i>Streulicht</i>
Masterdark	Bildbearbeitung	Gemitteltes Summenbild mehrerer Darks; wird zum Skalieren für unterschiedliche Belichtungszeiten bei konstanter Chiptemperatur benutzt
Mitteln	Bildbearbeitung	Mehrere Aufnahmen werden mittels geeigneter Software aufaddiert. Jeder <i>Pixel</i> wert wird durch die Anzahl der Aufnahmen geteilt. Dies verbessert das <i>Signal- Rausch- Verhältnis</i>
MK-System	Spektroskopie	è Spektralklassifizierung
Monochromatisch	Spektroskopie	Licht ist monochromatisch, wenn die <i>Photonen</i> nur eine <i>Wellenlänge</i> besitzen (mathematischer Idealfall)

Seite 61

Stichwort	Bereich	Erklärung
mü- Meter	Spektroskopie	ISO- Masseinheit für kleine Längen. 1 mü- Meter entspricht einem Millionstel
		Meter = 0,000001 Meter oder 1 x 10 á -6 Meter. Korrekte Abkürzung: "µm"
Multiplikation	Bildbearbeitung	
Nanometer	Spektroskopie	ISO- Masseinheit für die <i>Wellenlänge</i> im sichtbaren Lichtbereich, 1 <i>Nanometer</i> entspricht 0,000000001 Meter oder 1 x 10 á -9 Meter. Korrekte Abkürzung: "nm"
Normierung	Spektroskopie	Der Scan der Spektralaufnahme wird durch das <i>Pseudokontinuum</i> (Hüllkurve) dividiert. Das neue <i>Kontinuum</i> hat damit den <i>wellenlängen</i> unabhängigen Wert "1".
Objektiv	Spektroskop	Optisches System zum Sammeln von <i>Licht</i> , das aus Linsen (Refraktor), Spiegeln (Reflektor) oder Kombinationen von Linsen und Spiegeln (Katadiopter) bestehen kann
Offset	Bildbearbeitung	è Bias
Optik	Optik	Vorrichtung zum Sammeln von Licht. Je nach Aufbau unterscheidet man Refraktor (Linsen), Reflektor (Spiegel) oder Katadiopter (Kombination von Linse und Spiegel)
Optische Spektroskopie	Spektroskopie	Beobachtungsverfahren für das Ermitteln von <i>Wechselwirkungen</i> zwischen Materie und optischen, elektromagnetischen Wellen
Ordnung	Spektroskopie	Bei Benutzung eines <i>Beugungsgitters</i> können mehrere Spektren entstehen (erste und höhere Ordnung). Die nullte Ordnung ist das ungebeugte Licht vom Gitter
Photonen	Spektroskopie	Lichtteilchen; damit das wichtigstes Teilchen in der Astrospektroskopie. è Elektromagnetische Wechselwirkung
Pixel	Bildbearbeitung	Ist ein Mikrokondensator - einige <i>mü- Meter</i> gross - der sich mit zunehmender Lichtintensität bzw. – Belichtungsdauer proportional elektrisch auflädt. Mehrere dieser Kondensatoren - bis zu einigen Millionen als Raster nebeneinander - sind bei einem <i>Sensor</i> zusammengefasst
Pixelgrösse	Bildbearbeitung	Laterale Abmessung der Pixel. Gebräuchlich sind 6x6 bis 24x24 <i>mü- Meter</i> . Hat direkten Einfluss auf die <i>Sensor</i> empfindlichkeit und die Auflösung. Je grösser das <i>Pixel</i> , desto grösser die Lichtempfindlichkeit.
Pixelwert	Bildbearbeitung	Graustufenbildung. Ein 16-bit-Wandler verfügt über 65'000 Graustufen
Prisma	Spektroskop	Glaskörper verschiedenster Bauarten (nicht unbedingt prismenförmig), die das <i>Licht</i> mittelst <i>Refraktion</i> (Brechung) aufspalten
Pseudokontinuum	Spektroskopie	Kontinuum des Sterns nach Durchgang durch die Atmosphäre, des Teleskops und des Spektrografen; einschliesslich Registrierung im Detektor. Hat in der Regel wenig mit dem tatsächlichen Kontinuum eines Sterns zu tun è Normieren
Reduktion	Spektroskopie	Gesamtheit aller Bearbeitungsschritte, um ein Spektrum aus den Rohdaten auszuwerten. è Spektrallinie
Reflektion	Optik	Rückwerfen eines eintreffenden Lichtstrahls nach dem Reflektionsgesetz
Reflektionsgesetz	Optik	Sagt aus, dass ein eintreffender <i>Lichtstrahl</i> im selben Winkel zurückgeworfen wird.
Reflektionsgitter	Spektroskop	Auf Interferenzen, unter Reflektionsbedingungen, beruhendes Beugungsgitter
Refraktion	Optik	Brechen eines Lichtstrahls nach dem Refraktionsgesetz
Refraktionsgesetz	Optik	Je nach Wellenlange, Geometrische Form und Brechungsindex des Glaskörpers wird ein Lichtstrahl mehr oder weniger stark gebrochen
S/N- Verhältnis	Bildbearbeitung	è Signal- Rausch- Verhältnis
Sattigung	Bildbearbeitung	Ein <i>Pixel</i> - (Kondensator) kann nur eine bestimmte Ladung "aufnehmen", bis er "voll" = gesättigt ist. Die Sättigung ist das Verlassen des Proportionalitätsbereichs eines Chips bei hoher Ladung. Je nach Kamera und Chip kann dies schon bei 60% der "Vollen Ladungskapazität" (Full Well Capacity) erreicht sein.
Sensor	Kamera	
Sichtbare Farbe	Spektroskopie	Elektromagnetische Schwingung mit Wellenlängen zwischen 380 (Violett) und 750 (Rot) nm
Sichtbares Licht	Spektroskopie	Elektromagnetische Wellen im Wellenlängenbereich von 400 (Ultrablau) und 700 (Rot) <i>Nanometer</i> .
Signal- Rausch- Verhältnis	Bildbearbeitung	Stellt das Verhältnis des mittleren Nutzsignals zum mittleren Störsignal (Rauschen) dar. Mittels <i>Mittelung</i> mehrerer Bilder kann dieses Verhältnis verbessert werden, da sich das Nutzsignal linear vergrössert, das Rauschsignal nur per Wurzel
Skylines	Spektroskopie	è Hintergrund
Spaltfunktion	Spektroskop	Mathematische Funktion welche die Abbildung einer monochromatischen Spektrallinie auf dem Detektor beschreibt

Stichwort	Bereich	Erklärung
Spaltspektrograf	Spektroskopie	Im Brennpunkt des <i>Kollimators</i> vom <i>Spektroskop/Spektrograf</i> befindet sich ein Spalt (einige 10 <i>mü- Meter</i>). Dieser sorgt für gleich bleibende <i>Auflösung</i> des <i>Spektrografen</i> und schirmt das <i>Beugungsgitter</i> weitgehend von dem den Stern umgebenden Himmels- und <i>Streulicht</i> ab
Spektralaufnahme	Spektroskopie	Mit einer Kamera aufgenommenes Spektrum
Spektralband	Spektroskopie	Mittelst Spektroskop erzeugtes Spektrum
Spektrale Aufspaltung	Spektroskopie	Das Zerlegen des einfallenden <i>Lichtes</i> in seine <i>Spektralfarben (Spektrogale Anteile)</i>
Spektralfarbe	Spektroskopie	Ist die reine <i>Farbe</i> , die nach der <i>Aufspaltung</i> eines <i>Licht</i> strahls sichtbar ist. Sie orientiert sich am Farbempfinden und geht von violett- blau- grün- gelb- orangerot
Spektralklassifizieru ng	Spektroskopie	Das Einordnen eines stellaren Spektrums nach gewissen Kriterien; bekannt ist die Morgan-Keenan (MK-) Klassifikation in die Spektralklassen OBAFGKM (RN) und die Leuchtkraftklassen I-V
Spektrallampe	Spektroskopie	Lampe die im Licht einzelne <i>Emissionslinien</i> aufweist; wird verwendet zur spektralen <i>Kalibration</i>
Spektrallinie	Spektroskopie	Dunkle Stelle im Spektrum im Vergleich zum umgebenden Kontinuum. Individuelle Wellenlängenposition ist typisch für Atome, Ionen und Moleküle
Spektrograf	Spektroskopie	Vorrichtung für das Aufspalten von Licht mittels Prisma oder Gitter und Aufnehmen mit einem Detektor
Spektrografie	Spektroskopie	Aufzeichnung eines Spektrums mittelst Spektrografen
Spektroskop	Spektroskopie	Vorrichtung zum Zerlegen eines Lichtstrahls in seine Spektralfarben
Spektroskopie	Spektroskopie	è Optische Spektroskopie
Spektrum	Spektroskopie	Das durch die <i>Aufspaltung</i> von <i>Licht</i> entstehende <i>Spektralband</i> , das sich von rot über orange, gelb, grün, blau zu violett ändert. (z.B. Regenbogenfarben)
Standardstern	Spektroskopie	Stern mit genau bestimmtem, "unveränderlichem" <i>Spektrum</i> . Kann benutzt werden zur <i>Spektralklassifizierung</i> oder, wenn gleichzeitig gemessen, zur spektralen <i>Kalibration</i> oder zur <i>Atmosphärenkorrektur</i>
Streulicht	Spektroskopie	Im optischem System gestreutes <i>Licht</i> , das mit einer anderen <i>Wellenlänge</i> auf den <i>Detektor</i> gelangt als das eigentliche <i>Spektrum</i>
Subtraktion	Bildbearbeitung	Digitales und <i>pixel</i> weises "Abziehen" von einem Bild zum andern. Wird genutzt bei Bildverarbeitung und <i>Reduktion</i>
Summenbild	Bildbearbeitung	Summe aller addierten Einzelaufnahmen
Tellurische Linie	Spektroskopie	Absorptionslinie welche nicht im Stern, sondern in der Erdatmosphäre entsteht
Transmissionsgitter	Spektroskopie	è Beugungsgitter
Vergleichsspektrum	Spektroskopie	è Kalibrierspektrum
Verstärkerrauschen	Bildbearbeitung	Entsteht in der Auslese- und Digitalisierungselektronik von CCD- und CMOS- Sensoren und ist mit einem <i>Bias-</i> Bild korrigierbar
Wechselwirkung	Spektroskopie	Die optische Spektroskopie interessiert ausschliesslich die Elektromagnetische Wechselwirkung. Zwischen Materie und sichtbarem Licht
Wellenlänge	Spektroskopie	Mit dieser Grösse ist unter anderem auch eine elektromagnetische Welle (<i>Licht</i>) definiert. Einheit beim <i>sichtbaren Licht</i> ist <i>Nanometer</i> (nm) oder (noch) <i>Angström</i> , 10 <i>Angström</i> = 1 <i>Nanometer</i> . Die Wellenlänge ist der Quotient von der Ausbreitungsgeschwindigkeit und Frequenz

Versionen-History:

6.2 01.11.2011: Ergänzungen bei den Hinweisen für die Dateibezeichnungen und –Nummerierungen. (Seite 3)

- 6.1 24.10.2010: Anpassung Schritte 6+7: Berücksichtigung der "Hotpixel"
- 5.6: 20.03.2010: Diverse Präzisierungen im Text, Hinweise auf Störungsquellen bei der Verwendung von Sonderzeichen im Dateinamen.
- 5.5 07.07.2009: VSPEC: Ergänzungen und Präzisierungen bei der Kalibration (Schritte 4-10, 26+27)
- 5.4 06.06.2009: Kalibration nichtlinearer Spektren (Schritte 26 bis 29)
- 5.3 24.05.2009: Diverse, kleinere Korrekturen
- 5.2 15.05.2009: Erweiterung VSPEC um die Schritte 24+25: Bestimmen der Plancktemperatur
- 5.1 05.05.2005: Erweiterung VSPEC um Schritt 23: Messen von Spektralinformationen
- 5.0 16.04.2009: Diverse Darstellungskorrekturen, Anpassung verschiedener Screenshots, Erweiterung um Versionen- History
- 4.1 13.04.2009: Hinweise bei Schritt 16 auf mögliche Ungenauigkeiten bei der Verwendung der automatischen Kontinuumsbildung. Tipp seitens *Richard Walker*
- 4.0 12.04.2009: Diverse Rechtschreibekorrekturen, Gestaltungsanpassungen
- 3.3 09.04.2009: Erweiterung um die Anhänge 3+4: Dateibezeichnungen, Glossar
- 3.2 05.04.2009: Erweiterung um die Anhänge 1+2: Neonspektrum, Stichwortregister
- 3.0 03.04.2009: Erweiterung VSPEC um die Schritte 19-22: Kontinuum aus Spektralprofil entfernen. Hilfe seitens *Richard Walker*
- 2.1 31.03.2009: Erweiterung um die im Tutorial verwendeten Datei Bezeichnungen (Seite 2)
- 2.0 29.03.2009: Erweiterung VSPEC um die Schritte 12-18: Berücksichtigung der gerätespezifischen Einflüsse. Hilfe seitens *Richard Walker*
- 1.2 15.03.2009: Schritt 12, Berücksichtigung Himmelshintergrund; Hinweis bezüglich Unwichtigkeit bezüglich X- Richtung der vier Markierungspunkte. Tipp seitens *Robin Leadbeater*
- 1.1 10.03.2009: Diverse Rechtschreibekorrekturen. Hinweis seitens *Hugo Kalbermatten*
- 1.0 08.03.2009: Tutorial IRIS und VSPEC anhand eines Mitschnitts des Workshops von *Hugo Kalbermatten* am 3. Einsteigerkurs in Heppenheim vom 28. Februar 2009 erarbeitet

Formatierung der Seiteneinrichtung:

Tutorial IRIS / VSPEC Version 6.2

Seite 64

Seitenvorla	ge: St	andard						3
Verwalten 9	jeite	Hintergrund	Kopfzeile	Fußzeile	Umrandung	Spalten	Fußnote	
Papierforma	at —				_			
<u>F</u> ormat	4	4 💊	1					
Breite	2	1.00cm 😂						
Höh <u>e</u>	2	9.70cm 😂						
Ausrichtu	ng 🧕) Hochformat						
	С	Querformat	<u>P</u> apie	rzufuhr	[Aus Druck	ereinstellung] 🔽	
Seitenrände	er —		— Layoute	einstellunge	n ———			
Links		1.50cm 😂	Seiter	nlayout	Rechts u	nd Links	*	
<u>R</u> echts		1.00cm 😂	Form	ət	1, 2, 3, .		*	
<u>O</u> ben		1.00cm 😂	R	egisterhalti	gkeit			
Unten		1.50cm 😂	Re	eferenzabs	a <u>t</u> zvorlage		_	
							~	
								J
			ОК	Abbre	echen [<u>H</u> ilfe	<u>Z</u> urück)